Generating 3D plots using the mplot3d toolkit.
Contents
An Axes3D object is created just like any other axes using
the projection=‘3d’ keyword.
Create a new matplotlib.figure.Figure
and
add a new axes to it of type Axes3D
:
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
New in version 1.0.0: This approach is the preferred method of creating a 3D axes.
Note
Prior to version 1.0.0, the method of creating a 3D axes was
different. For those using older versions of matplotlib, change
ax = fig.add_subplot(111, projection='3d')
to ax = Axes3D(fig)
.
See the mplot3d FAQ for more information about the mplot3d toolkit.
Axes3D.
scatter
(xs, ys, zs=0, zdir='z', s=20, c=None, depthshade=True, *args, **kwargs)¶Create a scatter plot.
Argument | Description |
---|---|
xs, ys | Positions of data points. |
zs | Either an array of the same length as xs and ys or a single value to place all points in the same plane. Default is 0. |
zdir | Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set. |
s | Size in points^2. It is a scalar or an array of the same length as x and y. |
c | A color. c can be a single color format string, or a sequence of color specifications of length N, or a sequence of N numbers to be mapped to colors using the cmap and norm specified via kwargs (see below). Note that c should not be a single numeric RGB or RGBA sequence because that is indistinguishable from an array of values to be colormapped. c can be a 2-D array in which the rows are RGB or RGBA, however, including the case of a single row to specify the same color for all points. |
depthshade | Whether or not to shade the scatter markers to give the appearance of depth. Default is True. |
Keyword arguments are passed on to
scatter()
.
Returns a Patch3DCollection
Axes3D.
plot_wireframe
(X, Y, Z, *args, **kwargs)¶Plot a 3D wireframe.
Note
The rcount and ccount kwargs, which both default to 50, determine the maximum number of samples used in each direction. If the input data is larger, it will be downsampled (by slicing) to these numbers of points.
Parameters: | X, Y, Z : 2d arrays
rcount, ccount : int
rstride, cstride : int
**kwargs :
|
---|
Axes3D.
plot_surface
(X, Y, Z, *args, **kwargs)¶Create a surface plot.
By default it will be colored in shades of a solid color, but it also supports color mapping by supplying the cmap argument.
Note
The rcount and ccount kwargs, which both default to 50, determine the maximum number of samples used in each direction. If the input data is larger, it will be downsampled (by slicing) to these numbers of points.
Parameters: | X, Y, Z : 2d arrays
rcount, ccount : int
rstride, cstride : int
color : color-like
cmap : Colormap
facecolors : array-like of colors.
norm : Normalize
vmin, vmax : float
shade : bool
**kwargs :
|
---|
Axes3D.
plot_trisurf
(*args, **kwargs)¶Argument | Description |
---|---|
X, Y, Z | Data values as 1D arrays |
color | Color of the surface patches |
cmap | A colormap for the surface patches. |
norm | An instance of Normalize to map values to colors |
vmin | Minimum value to map |
vmax | Maximum value to map |
shade | Whether to shade the facecolors |
The (optional) triangulation can be specified in one of two ways; either:
plot_trisurf(triangulation, ...)
where triangulation is a Triangulation
object, or:
plot_trisurf(X, Y, ...)
plot_trisurf(X, Y, triangles, ...)
plot_trisurf(X, Y, triangles=triangles, ...)
in which case a Triangulation object will be created. See
Triangulation
for a explanation of
these possibilities.
The remaining arguments are:
plot_trisurf(..., Z)
where Z is the array of values to contour, one per point in the triangulation.
Other arguments are passed on to
Poly3DCollection
Examples:
(Source code, png, pdf)
(Source code, png, pdf)
New in version 1.2.0: This plotting function was added for the v1.2.0 release.
Axes3D.
contour
(X, Y, Z, *args, **kwargs)¶Create a 3D contour plot.
Argument | Description |
---|---|
X, Y, | Data values as numpy.arrays |
Z | |
extend3d | Whether to extend contour in 3D (default: False) |
stride | Stride (step size) for extending contour |
zdir | The direction to use: x, y or z (default) |
offset | If specified plot a projection of the contour lines on this position in plane normal to zdir |
The positional and other keyword arguments are passed on to
contour()
Returns a contour
Axes3D.
contourf
(X, Y, Z, *args, **kwargs)¶Create a 3D contourf plot.
Argument | Description |
---|---|
X, Y, | Data values as numpy.arrays |
Z | |
zdir | The direction to use: x, y or z (default) |
offset | If specified plot a projection of the filled contour on this position in plane normal to zdir |
The positional and keyword arguments are passed on to
contourf()
Returns a contourf
Changed in version 1.1.0: The zdir and offset kwargs were added.
New in version 1.1.0: The feature demoed in the second contourf3d example was enabled as a result of a bugfix for version 1.1.0.
Axes3D.
add_collection3d
(col, zs=0, zdir='z')¶Add a 3D collection object to the plot.
2D collection types are converted to a 3D version by modifying the object and adding z coordinate information.
Axes3D.
bar
(left, height, zs=0, zdir='z', *args, **kwargs)¶Add 2D bar(s).
Argument | Description |
---|---|
left | The x coordinates of the left sides of the bars. |
height | The height of the bars. |
zs | Z coordinate of bars, if one value is specified they will all be placed at the same z. |
zdir | Which direction to use as z (‘x’, ‘y’ or ‘z’) when plotting a 2D set. |
Keyword arguments are passed onto bar()
.
Returns a Patch3DCollection
Axes3D.
quiver
(*args, **kwargs)¶Plot a 3D field of arrows.
call signatures:
quiver(X, Y, Z, U, V, W, **kwargs)
Arguments:
- X, Y, Z:
- The x, y and z coordinates of the arrow locations (default is tail of arrow; see pivot kwarg)
- U, V, W:
- The x, y and z components of the arrow vectors
The arguments could be array-like or scalars, so long as they they can be broadcast together. The arguments can also be masked arrays. If an element in any of argument is masked, then that corresponding quiver element will not be plotted.
Keyword arguments:
- length: [1.0 | float]
- The length of each quiver, default to 1.0, the unit is the same with the axes
- arrow_length_ratio: [0.3 | float]
- The ratio of the arrow head with respect to the quiver, default to 0.3
- pivot: [ ‘tail’ | ‘middle’ | ‘tip’ ]
- The part of the arrow that is at the grid point; the arrow rotates about this point, hence the name pivot. Default is ‘tail’
- normalize: bool
- When True, all of the arrows will be the same length. This defaults to False, where the arrows will be different lengths depending on the values of u,v,w.
Any additional keyword arguments are delegated to
LineCollection
Axes3D.
text
(x, y, z, s, zdir=None, **kwargs)¶Add text to the plot. kwargs will be passed on to Axes.text,
except for the zdir
keyword, which sets the direction to be
used as the z direction.
Having multiple 3D plots in a single figure is the same as it is for 2D plots. Also, you can have both 2D and 3D plots in the same figure.
New in version 1.0.0: Subplotting 3D plots was added in v1.0.0. Earlier version can not do this.