This example displays the difference between interpolation methods for imshow and matshow.
If interpolation
is None, it defaults to the rc image.interpolation
parameter. If the interpolation is none
, then no interpolation is performed
for the Agg, ps and pdf backends. Other backends will default to ‘nearest’.
For the Agg, ps and pdf backends, interpolation = ‘none’ works well when a big image is scaled down, while interpolation = ‘nearest’ works well when a small image is scaled up.
import matplotlib.pyplot as plt
import numpy as np
methods = [None, 'none', 'nearest', 'bilinear', 'bicubic', 'spline16',
'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric',
'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos']
# Fixing random state for reproducibility
np.random.seed(19680801)
grid = np.random.rand(4, 4)
fig, axes = plt.subplots(3, 6, figsize=(12, 6),
subplot_kw={'xticks': [], 'yticks': []})
fig.subplots_adjust(hspace=0.3, wspace=0.05)
for ax, interp_method in zip(axes.flat, methods):
ax.imshow(grid, interpolation=interp_method, cmap='viridis')
ax.set_title(interp_method)
plt.show()
Total running time of the script: ( 0 minutes 1.383 seconds)