You are reading documentation for the unreleased version of Matplotlib. Try searching for the released version of this page instead?
Version 2.0.0b1.post7580.dev0+ge487118
matplotlib
Fork me on GitHub

Related Topics

This Page

Demo Curvelinear GridΒΆ

Custom grid and ticklines.

This example demonstrates how to use GridHelperCurveLinear to define custom grids and ticklines by applying a transformation on the grid. This can be used, as showcase on the second plot, to create polar projections in a rectangular box.

../../_images/sphx_glr_demo_curvelinear_grid_001.png
import numpy as np

import matplotlib.pyplot as plt
import matplotlib.cbook as cbook

from mpl_toolkits.axisartist import Subplot
from mpl_toolkits.axisartist import SubplotHost, \
    ParasiteAxesAuxTrans
from mpl_toolkits.axisartist.grid_helper_curvelinear import \
    GridHelperCurveLinear


def curvelinear_test1(fig):
    """
    grid for custom transform.
    """

    def tr(x, y):
        x, y = np.asarray(x), np.asarray(y)
        return x, y - x

    def inv_tr(x, y):
        x, y = np.asarray(x), np.asarray(y)
        return x, y + x

    grid_helper = GridHelperCurveLinear((tr, inv_tr))

    ax1 = Subplot(fig, 1, 2, 1, grid_helper=grid_helper)
    # ax1 will have a ticks and gridlines defined by the given
    # transform (+ transData of the Axes). Note that the transform of
    # the Axes itself (i.e., transData) is not affected by the given
    # transform.

    fig.add_subplot(ax1)

    xx, yy = tr([3, 6], [5.0, 10.])
    ax1.plot(xx, yy, linewidth=2.0)

    ax1.set_aspect(1.)
    ax1.set_xlim(0, 10.)
    ax1.set_ylim(0, 10.)

    ax1.axis["t"] = ax1.new_floating_axis(0, 3.)
    ax1.axis["t2"] = ax1.new_floating_axis(1, 7.)
    ax1.grid(True, zorder=0)


import mpl_toolkits.axisartist.angle_helper as angle_helper

from matplotlib.projections import PolarAxes
from matplotlib.transforms import Affine2D


def curvelinear_test2(fig):
    """
    polar projection, but in a rectangular box.
    """

    # PolarAxes.PolarTransform takes radian. However, we want our coordinate
    # system in degree
    tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform()

    # polar projection, which involves cycle, and also has limits in
    # its coordinates, needs a special method to find the extremes
    # (min, max of the coordinate within the view).

    # 20, 20 : number of sampling points along x, y direction
    extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,
                                                     lon_cycle=360,
                                                     lat_cycle=None,
                                                     lon_minmax=None,
                                                     lat_minmax=(0, np.inf),
                                                     )

    grid_locator1 = angle_helper.LocatorDMS(12)
    # Find a grid values appropriate for the coordinate (degree,
    # minute, second).

    tick_formatter1 = angle_helper.FormatterDMS()
    # And also uses an appropriate formatter.  Note that,the
    # acceptable Locator and Formatter class is a bit different than
    # that of mpl's, and you cannot directly use mpl's Locator and
    # Formatter here (but may be possible in the future).

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1
                                        )

    ax1 = SubplotHost(fig, 1, 2, 2, grid_helper=grid_helper)

    # make ticklabels of right and top axis visible.
    ax1.axis["right"].major_ticklabels.set_visible(True)
    ax1.axis["top"].major_ticklabels.set_visible(True)

    # let right axis shows ticklabels for 1st coordinate (angle)
    ax1.axis["right"].get_helper().nth_coord_ticks = 0
    # let bottom axis shows ticklabels for 2nd coordinate (radius)
    ax1.axis["bottom"].get_helper().nth_coord_ticks = 1

    fig.add_subplot(ax1)

    # A parasite axes with given transform
    ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")
    # note that ax2.transData == tr + ax1.transData
    # Anything you draw in ax2 will match the ticks and grids of ax1.
    ax1.parasites.append(ax2)
    intp = cbook.simple_linear_interpolation
    ax2.plot(intp(np.array([0, 30]), 50),
             intp(np.array([10., 10.]), 50),
             linewidth=2.0)

    ax1.set_aspect(1.)
    ax1.set_xlim(-5, 12)
    ax1.set_ylim(-5, 10)

    ax1.grid(True, zorder=0)

if 1:
    fig = plt.figure(1, figsize=(7, 4))
    fig.clf()

    curvelinear_test1(fig)
    curvelinear_test2(fig)

    plt.draw()
    plt.show()

Gallery generated by Sphinx-Gallery